

DOE Research and Development Magnet Division Muon Collaboration Review at BNL, 27–28 February 2002

Neutrino Storage Ring Developments

presented by, Brett Parker, BNL-SMD

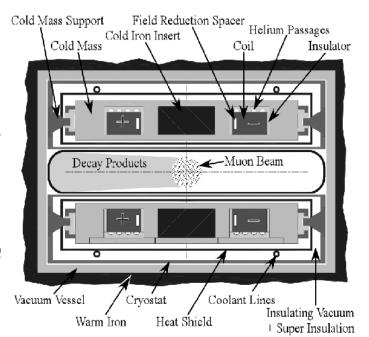
Some Muon Storage Ring Design Maria Callaboration Principles and Requirements.

Must keep the ring compact (*tilt* \rightarrow Δh).

- For shortest arc use a large guide field.
 - · Go beyond NbTi, but then must work with brittle materials (Nb₃Sn or HTS).
 - The arc dipoles have significant sagitta.
 - Flat racetrack coils are conductor friendly.

"Minimize aperture" with short cell length.

- Poor muon ε means keeping β and dispersion low as possible.
- But avoid wasting space with many dipole/quadrupole coil ends.

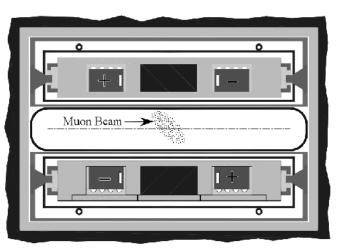


1/3 beam energy goes into decay electrons.

Muon Storage Ring Dipole Magnet Division Magnet Cross Section.

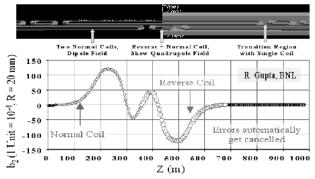
- Has simple racetrack coils and an open midplane.
- The large bend radius allows "react and wind."
- Warm iron yoke minimizes the cold mass.
- The decay products clear the superconducting coils.

Muon Storage Ring Quadrupole **Magnet Cross Section (Skew).**


- The same construction as dipole.
- · Do skew optics for decoupled motion in A-B eigenplanes.
- Follow standard prescription for dispersion matching and chromaticity correction.
- Can however get slightly more acceptance than from upright lattice, $\beta_{eff} = (\beta_A + \beta_B)/2$.

 $X = (A+B)/\sqrt{2}$ $Y = (A-B)/\sqrt{2}$

 $A = (X + Y) / \sqrt{2}$ $B = (X - Y) / \sqrt{2}$


Reverse polarity of one dipole coil to make a skew quadrupole.

Muon Storage Ring Magnet Coil Magnet Division Much Company Layout and Harmonic Cancelation.

- Overlap coils for dipole or skew quad.
- No wasted space at coil ends (transition).
- Automatic cancelation of end harmonics.

For estimated errors at right a 20 mm reference radius is used. (bn) and $\langle a_n \rangle$ are the expected means to the normal and skew terms, $d(b_n)$ and d(an) are systematic uncertainties arising from design and manufacturing errors, and $\sigma(b_n)$ and $\sigma(a_n)$ are the random uncertainties in those values. Note that n = 2 corresponds to a sextupole term.

Dipole Error Summary*										
n	$-\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$ au(a_n)$				
1	0	0.2	0.2	0	1	2				
2	1	1	2	0	0.1	0.5				
3	0	0.1	0.1	0	0.3	1				
4	-1	1	1	O.	0.05	0.2				
5	0	0.03	0.03	0	0.1	0.5				
6	0.3	0.2	0.1	0	0.03	0.1				
7	0	0.03	0.01	0	0.03	0.1				
8	-0.1	0.1	0.02	0	0.03	0.1				
9	0	0.03	0.01	0	0.03	0.1				
10	-0.03	0.02	0.02	0	0.03	0.1				

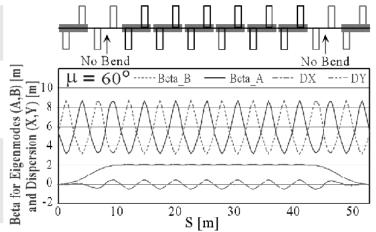
Skew Quadrupole Error Summary*										
16	$\langle b_{\sigma} \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$				
1	-0	0.2	0.2	0	1	2				
2	-0.5	0.5	- 1	-0	- 1	0.5				
-3	-0	0.1	0.1	2	2	1				
4	0.5	0.5	0.5	0	0.05	0.2				
- 5	0	0.03	0.03	1	1	2				
-6	-0	0.2	0.1	-0	0.03	0.1				
7	-0	0.03	0.01	0.5	0.5	0.3				
8	-0	0.1	0.05	-0	0.03	0.1				
9	0	0.03	0.01	0.1	0.03	0.1				
10	-0	0.02	0.01	-0	0.03	0.1				

*Errors given in units, 1 unit = 10-4 field deviation.

BROOKHAVEN Superconducting

Muon Storage Ring Arc Optics aboration and Magnet Design Parameters.

$$B = 6.93 \text{ T, } L_D = 1.89 \text{ m}$$


$$G = 35 \text{ T/m, } L_{SQ} = 0.76 \text{ m}$$

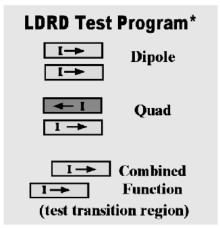
$$L_{cell} = 5.3 \text{ m}$$

$$L_{arc} = 10 \text{ X } L_{cell}$$

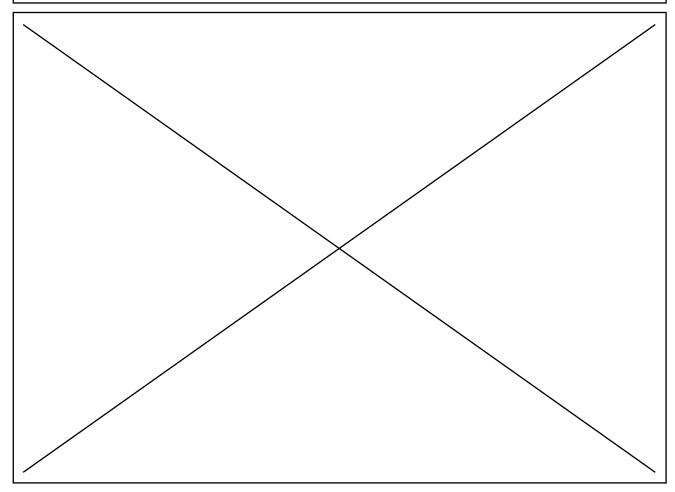
$$L_{straight} = 126 \text{ m}$$

Decay Ratio =
$$\frac{126}{2(126+53)}$$

= 35%


- The 163 m total length for ring is compatible with BNL site.
- Arcs are made up from three cryogenic sections (have conventional iron dominated quadrupoles elsewhere).
- Inject into up straight; v down straight points at detector.
- There is no need for ultrahigh beam vacuum (insulating ok).

The Muon Storage Ring Model Magnet Test Program (LDRD).


Want to test practical aspects for making a magnet:

- Make support structure to handle coil forces (heat leak).
- Work through coil winding, handling and the assembly into a coldmass.
- Test in many different configurations (dipole, skew quadrupole and skew combined function).
 - ◆ Make Nb₃Sn coil of same size as the muon storage ring magnet small coil.
 - Design and construct cold mass side supports.
 - Estimate heat leak and verify coil performance in all configurations.

*With two coil packs can change polarity and shift to test different magnet configurations.

